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Simulation of Two-Dimensional Gravity-Driven Unstable Flow
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The coupled equations for flow in unsaturated soil as proposed by Beliaev and Has-
sanizadeh [ 6] are described. These equations account for mechanism of dynamic capillary
pressure via a first order relaxation function. A form of the relaxation function for the dy-
namic capillary pressure-saturation relation is proposed based on physical reasoning and
a semi-analytical solution to the flow equations. A mass conservative and computational
efficient numerical solution to the coupled equations in two space dimensions is derived
and applied to the simulation of gravity-driven unstable flow. Simulated fingers have all
the morphological features of fingers observed in laboratory experiments. The results
demonstrate that the dynamic capillary pressure mechanism causes initial destabilization
of the flow, while the mechanism of capillary hysteresis leads to finger persistence.

1. Introduction

There are two main requirements for modeling the phenomenon of gravity-driven fin-
gering in unsaturated porous media: (i) the mathematical model must be capable of
producing unstable perturbations, and (ii) the growing perturbations have to be persis-
tent. In our previous work [ 1] a linear stability analysis was applied to the basic traveling
wave solution, and we studied the conditions for the growth of perturbations. We an-
alyzed three distinct models: (i) the conventional Richards equation (RE), (ii) a sharp
front Richards equation (SFRE) [ 2], and (iii) an extended Richards equation with a non-
equilibrium pressure-saturation function (RRE) [ 3]. The analysis by Egorov et al. [ 1]
shows that among the three models considered the RRE model is the only model capable
of generating a structured field of fingers from a slightly perturbed uniform wetting flow.

It was shown in [ 4, 5] that persistence of fingers is dominated by hysteresis in the
capillary pressure-saturation relation. Therefore, the hysteresis must be incorporated in
the model. Beliaev and Hassanizadeh [ 6] recently extended the RRE model to what we
refer to as the HRRE model, by accounting for hysteresis. In this paper we formulate the
HRRE model, develop a numerical solution scheme, and then apply it to two-dimensional
simulation of finger propagation. Two cases are considered, the case of a single finger
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generated from a finite surface source, and the case of multiple fingers generated from a
slightly perturbed initially uniform field.

2. Problem formulation

Unsaturated flow in porous media is usually modeled using the Richards equation. This
equation may be written in dimensionless form as

∂s

∂t
−∇ ·K(s)∇p +

∂

∂z
K(s) = 0 (1)

p = P (s) (2)

where s is the effective saturation (0 ≤ s ≤ 1), p is the water pressure, K is the rela-
tive hydraulic conductivity, P (s) is the equilibrium pressure represented by the capillary
pressure-saturation relationship, and z is the vertical coordinate taken positive downward.
Note that in general P (s) can be hysteretic. The HRRE model, like the RRE model, rep-
resents the extension of the RE model to incorporate the mechanism of relaxation in the
relation between capillary pressure and water saturation. The mechanism of relaxation or
dynamic memory effects has been evidenced in numerous experimental reports [ 7, 8, 9].
The extension of the RE model does not change (1), but replaces the relationship (2).

The HRRE model deals with hysteresis, and, therefore, two main hysteretic curves:
p = Pw(s) (main wetting curve or MWC) and p = Pd(s) (main drainage curve or MDC),
are incorporated in the model. These two curves divide the (p, s)-plane into three domains:
the main hysteretic loop H0, the domain Hw above the MWC, and the domain Hd below
the MDC (Figure 1). The HRRE model postulates [ 6] that dynamic memory effects
(relaxation) are significant only outside the main hysteretic loop, and it takes those effects
into account using the same modification of the capillary pressure-saturation relation as
in the RRE model [ 3]

τi
∂s

∂t
≡ τiṡ = p− Pi(s), (p, s) ∈ Hi, i = w, d (3)

where τi > 0 denotes the relaxation coefficient function. As a result of this postulate it is
assumed that inside the main hysteretic loop region H0, wetting/drainage processes follow
equilibrium scanning curves. In this paper we use the hysteresis model of Mualem [ 10] in
contrast to the play-type hysteresis model used in [ 6], and restrict our attention only to
the two-stage wetting-drainage process. Trajectories for the wetting stage locate within
Hw, while trajectories for the drainage stage will be limited to H0. The non-equilibrium
drainage domain Hd will never be visited for this two-stage process. As a result of the
applied conditions scanning curves turn out to be the primary drainage scanning curves [
10], yielding the relations

p = Psc(s, s∗) or s = Ssc(p, s∗) for (p, s) ∈ H0 (4)

Ssc(p, s∗) = Sw(p) +
s∗ − Sw(p)

1− Sw(p)
(Sd(p)− Sw(p)) (5)

where Ssc, Sw, and Sd are the inverse functions of Psc, Pw, and Pd respectively, and s∗
corresponds to the switching point (point 2 in Figure 1). Equations (3) and (4) may
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Figure 1. A typical closed-loop hysteresis dia-
gram. The dash line represents the scanning
drainage curve. The trajectory of the pro-
cess follow points 1 (initial state), 2 (switching
point), and 3 (final state).

Figure 2. Schematic of the compu-
tational domain with specified ini-
tial and boundary conditions (~q =
−K∇(p− z) and qi = −K(si)).

be transformed to one equation by the following. We introduce a set Σ of continuously
differentiable functions having a unique maximum and no minimums in (0,∞). For any
t > 0 we define the non-local Volterra-type operator Pt(·) : Σ → Σ and the inverse
operator St(·) so that, if p = Pt(s) then s = St(p):

Pt(s) =

{
Pw(s(t)), ṡ ≥ 0,

Psc(s(t), s∗), ṡ < 0
, St(p) =

{
Sw(p(t)), ṗ ≥ 0,

Ssc(p(t), p∗), ṗ < 0

where s∗ = max s(t), and p∗ = Pw(s∗). Then, the capillary pressure-saturation relations
(3) and (4) may be rewritten in terms of Pt as

τ ṡ = p− Pt(s), τ =

{
τw, (p, s) ∈ Hw,

0, (p, s) ∈ H0.
(6)

To specify the HRRE model, it is necessary to define the hydraulic properties of the
medium such as K, Pw and Pd, as well as τw as a function of parameters of the process. In
this paper we use the Van Genuchten-Mualem model [ 11] and specify the dimensionless
inverse capillary length as αw = 1 and αd = 0.5, and pore size distribution parameter
nw = nd = 10. These parameters correspond to coarse sandy soils, the texture usually
used to observe fingering in laboratory experiments.

The functional form for τw has not been reliably established previously, but to model
finger flow it is essential to establish a robust functional form. A brief description of an
analysis to establish such a functional form will now be given. This analysis is based on
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the traveling wave solution of the HRRE model. This solution may be derived analogously
to that for the RRE model [ 1]. The analysis shows that τw being a function only of s
postulated in [ 3, 6] leads to non-physical behavior of the traveling wave solution for small
initial saturation si. The trajectory of the wetting process is shown in the (p, s)-plane in
Figure 3a. It is observed that p → +∞ as si ↓ 0, a non-physical condition for porous
media. This non-physical behavior may be corrected if we assume that τw also depends
on p, for example:

τw = τs(s) (p0 − p)γ
+ , γ > 0

where (·)+ = max(·, 0), and p0 is the parameter referred to as the water entry pressure
of the soil [ 2, 12]. For the function τw specified above, there is the limiting trajectory as
si ↓ 0 (Figure 3b), and it corresponds to the sharp-front traveling wave solution, SFRE [
1]. It is precisely this behavior that was observed in experiments on initially dry coarse
porous media by Selker et al. [ 2].

From the physical standpoint, one may reason that τs(s) grows to infinity as s ap-
proaches either zero, or unity [ 13]. In two-dimensional calculations we tested various
functions τs(s) with power singularities at the ends of the interval (0, 1). The solution
was found to be qualitatively the same for all of the calculations. Therefore, in this paper
we present results only for τs(s) = τ 0

s P ′
w(s) which yields the capillary pressure-saturation

relation as

τ(p, s)Ṗt(s) = p− Pt(s) (7)

where τ(p, s) = τ 0 · (p0 − p)γ
+, and τ 0 coincides with τ 0

s inside Hw and holds to zero inside
H0. In the actual calculations, rather than setting τ 0 = 0 inside H0, it is set to a small
constant ' 10−3. Using this small value serves to allow the description of processes inside
and outside the main hysteretic loop by the same procedure, thus facilitating the use of
the same algorithm in all computations.

3. Discretization and solution of the HRRE

To numerically solve the system of equations (1) and (7) with initial and boundary
conditions shown in Figure 2, we use a mass-conservative approximation and evaluate the
temporal terms using a fully implicit first-order backward Euler scheme. To approximate
the spatial derivatives we use a finite-difference method with uniform mesh in the z-
direction with grid-size hz and non-uniform mesh in the x-direction with grid-sizes hx,i. As
a result we have the following algebraic equations in the internal grid points on arbitrary
time level t = tn:

si,j − ši,j

∆t
+

1

~x,i

(
ki−1/2,j(s)

Hi,j −Hi−1,j

hx,i−1

+ ki+1/2,j(s)
Hi,j −Hi+1,j

hx,i

)
+

1

h2
z

(
ki,j−1/2(s) (Hi,j −Hi,j−1) + ki,j+1/2(s) (Hi,j −Hi,j+1)

)
= 0 (8)

τ(pi,j, si,j)
Πi,j − Π̌i,j

∆t
= pi,j − Πi,j, si,j = St(Πi,j), pi,j = Hi,j + Zi,j (9)
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Figure 3. The typical trajectories for wetting stage of the traveling wave propagation
without (a) and with (b) p-dependence of relaxation coefficient for different si: τs ≡ 0.5,
p0 = 0, saturation behind the front is equal to 0.5 and γ = 1 for (b), while γ = 0 for (a).

Here si,j = s(xi, zj, t
n), ši,j = s(xi, zj, t

n−1), ∆t is the current time step size, ~x,i =
0.5(hx,i−1 + hx,i), Zi,j = zj, and

ki±1/2,j(s) =
√

k(si,j)k(si±1,j), ki,j±1/2(s) =
√

k(si,j)k(si,j±1)

At the boundary mesh points, the discrete approximation of the boundary conditions
corresponding to (8) must be added to the set of discrete equations.

Finally, all of these equations may be written in matrix form on the fixed time level
using lexicographical ordering of the grid points as

s− š

∆t
+ A(s)H = 0, p = H + Z (10)

τ(p, s)
Π− Π̌

∆t
= p− Π, s = St(Π) (11)

where s, p, and H are the unknown vectors of nodal values of saturation, pressure, and
total head fields respectively, A is the symmetric 5-diagonal matrix with coefficients de-
pendent on s, and τ(p, s) is a diagonal matrix.

We solve nonlinear algebraic equations (10) and (11) by the following iteration proce-
dure (k + 1 indicates current iteration level):

1) let k = 0, and pose pk = p̌, sk = š, Hk = p̌− Z;
2) find sk+1 from the explicit relations

τ(pk, sk)
Πk+1 − Π̌

∆t
= pk − Πk+1, sk+1 = St(Π

k+1)

3) solve the linear system of algebraic equations

A(sk+1)Hk+1 + Dk+1Hk+1 = Dk+1Hk − sk+1 − š

∆t
(12)
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and pose pk+1 = Hk+1 + Z. Here the diagonal matrix Dk+1 is the approximation of the
derivative of the vector valued function (s− š)/∆t with respect to p:

Dk+1 =
S ′

t(Π
k+1)

∆t

d

dp

(
p∆t + τ(p, sk+1)Π̌

τ(p, sk+1) + ∆t

) ∣∣∣
p=pk

4) set k = k + 1, and go to step 2). Repeat the loop until convergence is reached.
To obtain the solution for Hk+1 we invert the matrix of the system (12) using two

methods. For moderate grids (. 5000 nodes) we use a preconditioned conjugate gradient
method based on modified incomplete Cholesky factorization, while a multigrid method
(V-cycle) is used for larger grids. We note that the resulting matrix A(sk+1)+Dk+1 of the
system has good algebraic properties: it is symmetric, 5-diagonal, and positive definite.

Within the iteration loop 1)-4) the hysteretic state at a particular grid point is not
changed, but instead iteration continues until absolute and relative errors in pressure
and saturation between two consecutive iterations is less than a value ε. The change in
hysteretic state is checked after convergence. To assess whether any saturation reversals
have occurred at the end of each time step, we check for changes in the nodal saturations
from the previous time step. If the sign of si,j − ši,j at a node (i, j) has changed, and
|si,j − ši,j| > 10ε, the hysteretic state for the node is changed.

4. Results of simulations

In this section we apply the numerical method to model (i) propagation of a single
finger, and (ii) breakup of an initially uniform but slightly perturbed flow into fingers. In
both cases, simulations were made for different values of input parameters. We noticed
that a sharp-front regime may occur for some range of the input parameters (i.e. very dry
soils), and very fine grids are required to adequately simulate a steep change in saturation
over the front. The input parameters used in the calculations for the present results
were taken within a range that allows us to deal with reasonable grids (less than 50000
nodes) for a good front approximation (the front is covered by at least four nodes). For
all runs qualitatively similar behavior of the solutions were found. Therefore, we present
our results only for one case with τ 0

s = 5, γ = 1, si = 0.075, ε = 10−7, and hydraulic
properties of the coarse porous medium defined in Section 2.

The single finger generation is initiated by infiltration over the finite length L at the
upper boundary with the flux q0 > 0. The applied flux at the soil surface shown in
Figure 2 is less than the saturated hydraulic conductivity so that q0 < 1. At a short time
after the infiltration starts, a clearly defined single finger forms and then persistently
migrates downward (Figure 4). The finger shape is determined by the total flux Q = q0L.
The morphology of the finger is defined by three distinct features: finger tip with a higher
water saturation, stationary finger core and a distribution layer [ 14]. Once developed
the distribution layer remains steady while the finger tip moves at a constant velocity
without change in shape and the finger core length grows at a steady rate. This scenario
is fully consistent with the physical picture of the process presented in [ 4, 5]. The lateral
spreading of the finger core is halted by the pressure inside the finger being smaller than
the background pressure (Figure 4). We emphasize that the main characteristics of the
finger are uniquely designated by Q, with finger velocity, finger width, and saturation at
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Figure 4. Saturation (left) and pressure (right) fields for the case of a single finger.

both the finger tip and the finger core increasing with Q.
The process of the breakup of the initially uniform flow into a structured system of

growing perturbations is simulated in the same way as the case of the single finger prop-
agation. In this case, however, the water is supplied along the entire top boundary, and
the infiltration flux q0 is disturbed by a high-frequency low-amplitude (δ ∼ 10−2) pertur-
bation. A result typical of those found for the various simulations performed is presented
in Figure 5. The simulations demonstrate that:

(i) soon after flow initiation the initially uniform flow crests at the wetting front and
disintegrates to a predominant perturbation wavelength, forming a set of persistent inde-
pendently propagating fingers;

(ii) the water flow redistributes among fingers in the distribution region. This feature
was observed experimentally by Ritsema et al. [ 14]. The chain of pressure ‘hills’ represents
a border between the distribution layer and the finger cores;

(iii) the observed distance between fingers is in good agreement with the fastest growing
perturbation wavelength calculated by a stability analysis of the traveling wave solution
in [ 1] for the RRE model.

5. Discussion

The results presented in this paper demonstrate that the process of fingering can be
simulated by incorporating simultaneously both the dynamic (relaxation) and the static
(hysteresis) memory effects. The relaxation mechanism generates fingers [ 1] while hys-
teresis leads to their persistence. Other mechanisms for finger generation may exist, but
these still need to be postulated and examined.

The simulations presented above were for initially moist porous media. Similar results
also appear if the porous medium is initially very dry. Most laboratory experiments to
date have imposed initially dry conditions to generate finger flow. Perhaps the relax-
ation mechanism is only significant for infiltration processes when the soil is initially dry
enough, and this might be why finger flow has not been observed for initially moist porous
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Figure 5. Saturation (left) and pressure (right) fields for the case of multiple fingers.

media. These experimental findings do not change the conclusions of the present mod-
eling exercise. They simply point to the fact that the relaxation coefficient needs to be
quantified by experiments before drawing final conclusions about the influence of initial
moisture content.

Additional work is needed to improve the numerical methods to solve the governing
equations (1) and (7), especially for the case of initially dry media where extremely sharp
wetting fronts are involved. Adaptive grid and mesh refinement technique are appropriate
to address this issue. Techniques related to variable switching might also offer some unique
advantages for solving the case of initially dry porous media.

REFERENCES

1. A. G. Egorov, R. Z. Dautov, J. L. Nieber and A. Y. Sheshukov, Proc. 14th Int. Conf.
on Comp. Meth. in Wat. Resour. (Delft, The Netherlands) this issue (2002).

2. J. S. Selker, J.-Y. Parlange and T. Steenhuis, Water Resour. Res. 28 (1992) 2523.
3. S. M. Hassanizadeh and W. G. Gray, Water Resour. Res. 29 (1993) 3389.
4. R. J. Glass, T. S. Steenhuis and J.-Y. Parlange, Soil Sci. 148 (1989) 60.
5. J. L. Nieber, Geoderma 70 (1996) 207.
6. A. Y. Beliaev and S. M. Hassanizadeh, Transp. Porous Med. 43 (2001) 487.
7. D. R. Nielson, G. Biggar and G. Davidson, Soil Sci. Soc. Am. Proc. 26 (1962) 107.
8. G. C. Topp, A. Klute and D. B. Peters, Soil Sci. Soc. Am. Proc. 31 (1967) 207.
9. D. E. Smiles, G. Vachaud and M. Vauclin, Soil Sci. Soc. Am. Proc. 35 (1971) 535.
10. Y. Mualem, Water Resour. Res. 10 (1974) 514.
11. M. T. Van Genuchten, Soil Sci. Soc. Am. J. 44 (1980) 892.
12. R. S. Baker and D. Hillel, Soil Sci. Soc. Am. J. 54 (1990) 20.
13. M. Panfilov, In: Recent Adv. Prob. Flow Transp. Porous Media, J. M. Crolet and M.

E. Hatri (eds.) (1998) 195.
14. C. J. Ritsema, L. W. Dekker, J. M. H. Hendrickx and W. Hamminga, Water Resour.

Res. 29 (1993) 2183.


	Introduction
	Problem formulation
	Discretization and solution of the HRRE
	Results of simulations
	Discussion

